Submit Manuscript  

Article Details

Structural and Aggregation Properties of Alpha-Synuclein Linked to Phospholipase A2 Action

[ Vol. 25 , Issue. 4 ]


Kerensa Broersen*, Violeta Ruiperez and Bazbek Davletov   Pages 368 - 378 ( 11 )


Background: Alpha-synuclein is a protein involved in the pathogenesis of Parkinson's disease. In vitro observations have shown that specific brain-enriched polyunsaturated fatty acids, such as arachidonic acid, can give rise to a conformational change in alpha-synuclein and ultimately induce its fibrillation. Arachidonic acid is released by phospholipase A2 activity and clinical observations have shown a link between mutations in PLA2G6, the gene responsible for the production of phospholipase A2, and early-onset types of parkinsonism. It is unknown how phospholipase A2-driven release of arachidonic acid can affect the conformation of alphasynuclein.

Objective: The main objective of this study was to investigate if phospholipase A2-induced release of arachidonic acid can induce changes in conformation and aggregation state of alpha-synuclein.

Methods: Recombinant human alpha-synuclein was expressed and isolated and incubated in the presence of phosphatidylcholine and phosphatidylserine (PC/PS) containing liposomes. The release of free fatty acids from PC/PS liposomes by bee venom phospholipase A2 was measured with the fluorescent probe acrylodated intestinal fatty acid-binding protein (ADIFAB) and radioactive labelling by preparing liposomes in the presence of L- 3-phosphatidylcholine, 1-stearyl-2[1-14C] arachidonoyl. The effect of free fatty acid release on the conformation of alpha-synuclein was assayed by far-UV circular dichroism and resistance against V8 protease-induced limited proteolysis. Aggregation of alpha-synuclein upon exposure to phospholipase A2-induced action on PC/PS liposomes was measured using thioflavin T fluorescence, SDS-PAGE, gel filtration chromatography, and transmission electron microscopy. RAW264.7 cells were transiently transfected with human alpha-synuclein and release of arachidonic acid was quantified using radiolabeling and liquid scintillation counting.

Results: Phospholipase A2 is capable of releasing arachidonic acid from biomimetic phospholipid membranes. Exposure of alpha-synuclein to phospholipase A2-induced release of arachidonic acid from PC/PS liposomes induces a conformational transition of the protein and leads to partial resistance against proteolytic cleavage by V8 protease. Prolonged incubation of alpha-synuclein with arachidonic acid, derived from PC/PS liposomes by phospholipase A2 leads to aggregate formation. In line with this, transiently transfected RAW264.7 cells with alpha-synuclein showed arachidonic acid release and punctate alpha-synuclein staining upon phospholipase A2 activation. The ability of arachidonic acid to drive alpha-synuclein to aggregate was independent of its oxidation state.

Conclusion: We present data that suggest a biological context for the previously reported clinical observation that linked mutations in PLA2G6, the gene responsible for the production of phospholipase A2, and early-onset types of parkinsonism. Release of arachidonic acid, independent of its oxidation state, through activation of phospholipase A2-driven hydrolysis of phospholipid membranes, leads to the structural transition and aggregation of alpha-synuclein.


Alpha-synuclein, phospholipase A2, arachidonic acid, oxidation, Parkinson's disease, aggregation.


Faculty of Science and Technology, Nanobiophysics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Department of Microbiology. College of Agricultural Engineering. University of Valladolid, Palencia, Department of Biomedical Science, The University of Sheffield, Sheffield, Firth Court, Western Bank, S10 2TN

Graphical Abstract:

Read Full-Text article