Submit Manuscript  

Article Details


Prospecting Potential Inhibitors of Sortase A from Enterococcus faecalis: A Multidrug Resistant Bacteria, through In-silico and In-vitro Approaches

Author(s):

Satyajeet Das, Vijay Kumar H.S., Sudhir Kumar Pal, Vijay Kumar Srivastava, Anupam Jyoti, Sanjit Kumar and Sanket Kaushik*   Pages 1 - 11 ( 11 )

Abstract:


Background: Enterococcus faecalis (Ef) infections are becoming dreadfully common in hospital environments. Infections caused by Ef are difficult to treat because of its acquired resistance to different class of antibiotics, making it a multidrug resistant bacteria. Key pathogenic factor of Ef includes its ability to form biofilm on the surface of diagnostic and other medical devices. Sortase A (SrtA) is a cysteine transpeptidase which plays a pivotal role in the formation of biofilm in Ef, hence, it is considered as an important enzyme for the pathogenesis of Ef. Thus, inhibition of Sortase A will affect biofilm formation, which will reduce its virulence and eventually Ef infection will be abridged.

Objective: To find potential inhibitors of Enterococcus faecalis Sortase A (EfSrtA) through in-silico and in-vitro methods.

Methods: Gene coding for EfSrtA was cloned, expressed and purified. Three-dimensional model of EfSrtA was created using Swiss-Model workspace. In-silico docking studies using Autodock vina and molecular dynamics simulations of the modelled structures using Gromacs platform were performed to explore potential lead compounds against EfSrtA. In-vitro binding experiments using spectrofluorometric technique was carried out to confirm and validate the study.

Results: In-silico docking and in-vitro binding experiments revealed that curcumin, berberine and myricetin bound to EfSrtA at nanomolar concentrations with high affinity.

Conclusion: This is a first structural report of EfSrtA with curcumin, berberine and myricetin. Taking in account the herbal nature of these compounds, the use of these compounds as inhibitors will be advantageous. This study validated curcumin, berberine and myricetin as potential inhibitors of EfSrtA.

Keywords:

Enterococcus Faecalis Sortase A (EfSrtA), EfSrtA purification, EfSrtA Inhibitors, In-silico modelling & docking, Molecular dynamics simulations, In-vitro spectrofluorimetric studies

Affiliation:

Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bangalore, Centre for Bioseparation Technology, VIT University, Vellore-632014, Tamil Nadu, Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Centre for Bioseparation Technology, VIT University, Vellore-632014, Tamil Nadu, Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur



Read Full-Text article